Skip to main content

How to Annotate and Submit a Short Linear Motif to the Eukaryotic Linear Motif Resource

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Abstract

Over the past few years, it has become apparent that approximately 35% of the human proteome consists of intrinsically disordered regions. Many of these disordered regions are rich in short linear motifs (SLiMs) which mediate protein–protein interactions. Although these motifs are short and often partially conserved, they are involved in many important aspects of protein function, including cleavage, targeting, degradation, docking, phosphorylation, and other posttranslational modifications. The Eukaryotic Linear Motif resource (ELM) was established over 15 years ago as a repository to store and catalogue the scientific discoveries of motifs. Each motif in the database is annotated and curated manually, based on the experimental evidence gathered from publications. The entries themselves are submitted to ELM by filling in two annotation templates designed for motif class and motif instance annotation. In this protocol, we describe the steps involved in annotating new motifs and how to submit them to ELM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuchi S, Hosoda K, Homma K et al (2011) Binary classification of protein molecules into intrinsically disordered and ordered segments. BMC Struct Biol 11:29. https://doi.org/10.1186/1472-6807-11-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498. https://doi.org/10.1016/0896-6273(91)90052-2

    Article  CAS  PubMed  Google Scholar 

  3. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427. https://doi.org/10.1016/S0962-8924(98)01368-3

    Article  CAS  PubMed  Google Scholar 

  4. Tompa P (2010) Structure and function of intrinsically disordered proteins. Chapman & Hall/CRC Press, Boca Raton

    Google Scholar 

  5. Tompa P, Davey NE, Gibson TJ et al (2014) A million peptide motifs for the molecular biologist. Mol Cell 55:161–169. https://doi.org/10.1016/j.molcel.2014.05.032

    Article  CAS  PubMed  Google Scholar 

  6. Van Roey K, Uyar B, Weatheritt RJ et al (2014) Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev 114:6733–6778. https://doi.org/10.1021/cr400585q

    Article  CAS  PubMed  Google Scholar 

  7. Bardwell AJ, Flatauer LJ, Matlukuma K et al (2001) A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 276:10374–10386. https://doi.org/10.1074/jbc.M010271200

    Article  CAS  PubMed  Google Scholar 

  8. Zeke A, Bastys T, Alexa A et al (2015) Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Mol Syst Biol 11:837. https://doi.org/10.15252/msb.20156269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gibson TJ (2009) Cell regulation: determined to signal discrete cooperation. Trends Biochem Sci 34:471–482. https://doi.org/10.1016/j.tibs.2009.06.007

    Article  CAS  PubMed  Google Scholar 

  10. Davey NE, Travé G, Gibson TJ (2011) How viruses hijack cell regulation. Trends Biochem Sci 36:159–169. https://doi.org/10.1016/j.tibs.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Via A, Uyar B, Brun C et al (2015) How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci 40:36–48. https://doi.org/10.1016/j.tibs.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Puntervoll P (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31:3625–3630. https://doi.org/10.1093/nar/gkg545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gouw M, Michael S, Sámano-Sánchez H et al (2018) The eukaryotic linear motif resource—2018 update. Nucleic Acids Res 46:D428–D434. https://doi.org/10.1093/nar/gkx1077

    Article  CAS  PubMed  Google Scholar 

  14. Bateman A (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  15. Hornbeck PV, Kornhauser JM, Latham V et al (2019) 15 years of PhosphoSitePlus ® : integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res 47:D433–D441. https://doi.org/10.1093/nar/gky1159

    Article  CAS  PubMed  Google Scholar 

  16. Gibson TJ, Seiler M, R a V (2013) The transience of transient overexpression. Nat Methods 10:715–721. https://doi.org/10.1038/nmeth.2534

    Article  CAS  PubMed  Google Scholar 

  17. Gibson TJ, Dinkel H, Van Roey K et al (2015) Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad. Cell Commun Signal 13:42. https://doi.org/10.1186/s12964-015-0121-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Roey K, Dinkel H, Weatheritt RJ et al (2013) The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal 6:rs7. https://doi.org/10.1126/scisignal.2003345

    Article  CAS  PubMed  Google Scholar 

  20. Rawlings ND, Waller M, Barrett AJ et al (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:503–509. https://doi.org/10.1093/nar/gkt953

    Article  CAS  Google Scholar 

  21. El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995

    Article  CAS  PubMed  Google Scholar 

  22. Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496. https://doi.org/10.1093/nar/gkx922

    Article  CAS  PubMed  Google Scholar 

  23. Orchard S, Ammari M, Aranda B et al (2014) The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 42:D358–D363. https://doi.org/10.1093/nar/gkt1115

    Article  CAS  PubMed  Google Scholar 

  24. Velankar S, Alhroub Y, Best C et al (2012) PDBe: Protein Data Bank in Europe. Nucleic Acids Res 40:402–410. https://doi.org/10.1093/nar/gkr998

    Article  CAS  Google Scholar 

  25. Dinkel H, Chica C, Via A et al (2011) Phospho.ELM: a database of phosphorylation sites--update 2011. Nucleic Acids Res 39:D261–D267. https://doi.org/10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  26. Federhen S (2012) The NCBI taxonomy database. Nucleic Acids Res 40:136–143. https://doi.org/10.1093/nar/gkr1178

    Article  CAS  Google Scholar 

  27. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. NCBI Resource Coordinators (2017) Database resources of the National Center for biotechnology information. Nucleic Acids Res 45:D12–D17. https://doi.org/10.1093/nar/gkw1071

    Article  CAS  Google Scholar 

  29. Piovesan D, Tabaro F, Paladin L et al (2018) MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 46:D471–D476. https://doi.org/10.1093/nar/gkx1071

    Article  CAS  PubMed  Google Scholar 

  30. M a S (2008) The importance of stupidity in scientific research. J Cell Sci 121:1771. https://doi.org/10.1242/jcs.033340

    Article  CAS  Google Scholar 

  31. Kanehisa M, Sato Y, Furumichi M et al (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595. https://doi.org/10.1093/nar/gky962

    Article  CAS  PubMed  Google Scholar 

  32. Fabregat A, Jupe S, Matthews L et al (2018) The Reactome pathway knowledgebase. Nucleic Acids Res 46:D649–D655. https://doi.org/10.1093/nar/gkx1132

    Article  CAS  PubMed  Google Scholar 

  33. Gouw M, Sámano-Sánchez H, Van Roey K et al (2017) Exploring short linear motifs using the ELM database and tools. Curr Protoc Bioinformatics 58:8.22.1–8.22.35. https://doi.org/10.1002/cpbi.26

  34. Altschul S (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Piovesan D, Tabaro F, Mičetić I et al (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45:D219–D227. https://doi.org/10.1093/nar/gkw1056

    Article  CAS  PubMed  Google Scholar 

  36. Schad E, Fichó E, Pancsa R et al (2018) DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. Bioinformatics 34:535–537. https://doi.org/10.1093/bioinformatics/btx640

    Article  CAS  PubMed  Google Scholar 

  37. Fichó E, Reményi I, Simon I et al (2017) MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics 33:3682–3684. https://doi.org/10.1093/bioinformatics/btx486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mészáros B, Erdös G, Dosztányi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46:W329–W337. https://doi.org/10.1093/nar/gky384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oates ME, Romero P, Ishida T et al (2013) D2P2: database of disordered protein predictions. Nucleic Acids Res 41:508–516. https://doi.org/10.1093/nar/gks1226

    Article  CAS  Google Scholar 

  40. Linding R, Russell RB, Neduva V et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708. https://doi.org/10.1093/nar/gkg519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mitchell AL, Attwood TK, Babbitt PC et al (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47:D351–D360. https://doi.org/10.1093/nar/gky1100

    Article  CAS  PubMed  Google Scholar 

  42. Kerrien S, Orchard S, Montecchi-Palazzi L et al (2007) Broadening the horizon--level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 5:44. https://doi.org/10.1186/1741-7007-5-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waterhouse AM, Procter JB, Martin DMA et al (2009) Jalview version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Rita Pancsa and Athina Diakogianni for their valuable feedback on the manuscript and the team of annotators and curators who have contributed their time, knowledge, and efforts to the ELM database. JC was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 675341 (PDZnet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toby J. Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gouw, M. et al. (2020). How to Annotate and Submit a Short Linear Motif to the Eukaryotic Linear Motif Resource. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics